"Two-stage biodegradation of contaminating wastes linked to bioenergy generation using genomic approaches"

Seqomics Biotechnology Ltd. HAS BRC NIBIO

norway grants

Norway Grant HU09-0091-A1-2016

Gergely Maróti

Hungarian Academy of Sciences, Biological Research Centre (HAS BRC)

NORWEGIAN INSTITUTE OF BIOECONOMY RESEARCH

SCIENTIFIC-SOCIETAL CONTEXT

- Major issues to be addressed:
 - > protecting the fresh-water resources;
 - organic wastes management;
 - rising energy demands;
 - energy independence.

• Biohydrogen production:

- versatile;
- environmentally friendly, renewable energy carrier;
- highest energy potential (142 kJ/g);
- ➢ biohydrogen production methods → carbon neutral or even negative.

General objectives, strategy

Hybrid system using fermentative and photosynthetic microorganisms

• Stage I. Dark fermentation (strictly or facultative anaerobes):

 $C_6H_{12}O_6 + 2H_2O \rightarrow 2CH_3COOH + 2CO_2 + 4H_2$

• Stage II. Photo-fermentation (photosynthetic bacteria and algae):

```
2CH_3COOH + 4H_2O \rightarrow 8H_2 + 4CO_2
```


lightenergy

Goal: to engineer the Anaerobic Degradation (AD) of wastes for selective biohydrogen generation

APPROACH

- 1. Design of synthetic wastewater types (sterile)
- 2. Enrichment of the active inoculum (active sludge)
 - Heat treatment
 - Acid treatment
 - Ultrasonication
- 3. Anaerobic degradation experiments (in controlled small scale batch bioreactors)
 - Identification of influencing factors, interactions among them
- 4. Gas and Sludge analytics and metagenomics
- 5. Correlations, conclusions, process optimization with real wastewater

Development of a design of experiments (DOE) approach

rank the different influencing factors (IF) according to their relative importance;
 identify the directions of influence;

analysis of the effect of the interactions occurring among the investigated variables;
 process optimization.

norwal

Experiment example: 3 IF tested with 3 values each

Table: Coded values of the variables used in the Full and Central-Composite Factorial Experimental Design.						
Coded symbol	Variables —	Values of coded levels				
		(-1)	(0)	(+1)		
X ₁	Operating temperature (°C)	25	31	37		
X ₂	Initial value of fermentation pH	4.8	5.6	6.5		
X ₃	Glucose addition (g/L)	5	10	15		

Experiment matrices for 2 statistical models (with hydrogen yield results)

Table: Full Factorial (run no. 1-8) and Central-Composite (run no. 9-16) multifactorial experimental design matrix of the three investigated variables, with the total measured H_2 production for each of the experimental runs.

Run No.		Variables	;	Response	
	X ₁	X ₂	X ₃	Total hydrogen production mean (ml/L/day)	
1	-1	-1	-1	8,66	
2	-1	-1	1	9,62	
3	-1	1	-1	22,34	
4	-1	1	1	25,23	
5	1	-1	-1	8,28	
6	1	-1	1	8,35	
7	1	1	-1	14,67	
8	1	1	1	11,92	
9	-1.28	0	0	17,67	
10	1.28	0	0	10,43	
11	0	-1.28	0	2,97	
12	0	1.28	0	27,18	
13	0	0	-1.28	14,95	
14	0	0	1.28	25,92 NOrWau	
15	0	0	0	21,08 grants 🍌 🗌	

Biohydrogen yield is strongly correlated with the relative abundance of *Clostridia*

Identification of the optimum area for each pair of influencing factor

Process optimization for real wastewater

Beer Factory

Wastewater Treatment Plant

Methane producing pilot scale bioreactor

Polluted river

Substrate-dependent pretreatment approach for the possible highest AD biohydrogen yield

WAYS for ALGAL H₂ GENERATION

- Direct biophotolysis of water (green algae, cyanobacteria)
- **Photodecomposition of organic compounds** (indirect biophotolysis, green algae, photosynthetic bacteria)
- Dark fermentative hydrogen production (algae, bacteria, complex microbial comm.)

BOTTLENECKS OF PRESENT ALGAE TECHNIQUES

Sulfur deprivation in light and dark fermentation

Two-phase systems (biomass and hydrogen production are separated)
Sulfur deprivation is difficult (media exchange) and lethal for algae cells
Low hydrogen yield

ALTERNATIVE SOLUTION ALGAL-BACTERIAL ASSOCIATIONS under illumination

- Efficient bacterial respiration consumes the hydrogenase-inhibiting oxygen
- Bacterial partners enhance algal growth
- Active photosynthesis and biomass generation maintained throughout hydrogen production

Applied Strains	Relevant genotype or phenotype		
Green Algae			
Chlamydomonas reinhardtii cc124	Wild type		
Chlorella sp. MACC 360	Wild type		
Chlorella sp. MACC 411	Wild type		
Chlamydomonas sp. MACC 530	Wild type		
Chlamydomonas sp. MACC 549	Wild type		
Chlamydomonas sp. MACC 772	Wild type		
Chlamydomonas sp. MACC 775	Wild type		
Chlorella sorokiniana	Own isolate		
Micractinium sp.	Own isolate		
Monoraphidium neglectum	Own isolate		
Applied bacterial partners			
Escherichia coli JW5433	BW25113, $\Delta hypF$::kan		
Enterobacter sp.	Own isolate		

Molecular investigations of the algal-bacterial interaction in wastewater:

- miRNA Seq of Ch. reinhardtii under different conditions
- De novo genome sequencing of 10 selected strains, draft genomes assembled
- RNA-Seq of the 10 investigated algae strains under 4 conditions each
- key genes identified in algal hydrogen production in wastewater (PFR and 4 genes encoding hyptothetical proteins)

Overview of the technology

Acknowledgements

Katalin Tajti Gyöngyi Szigeti Mónika Mari

Bernadett Pap Attila Farkas Gergely Maróti NORWEGIAN INSTITUTE OF BIOECONOMY RESEARCH

Carl Gunnar Fossdahl Stig Borgvang